Chapter 11: DEVELOPING PHYSICAL FITNESS

“You may never know what results come of your actions, but if you do nothing there will be no result.”

Mahatma Gandhi
Contents

- Fitness Training Principles
- Components of Physical Fitness
- Components of Motor Ability
- Fitness Training Activities
Introduction

In this chapter, you will learn about the following:

1. The characteristics of fitness training principles
2. The components of physical fitness and motor ability
3. The benefits of different types of fitness training activities
4. Designing a training program to meet specific fitness goals
Total Fitness

- Functional readiness and level of effectiveness required for everything a person does
- Involves the ability to adapt to the demands and stresses of daily life
- Directly related to the amount and intensity of physical activity

- Dimensions:
 - Physical
 - Emotional
 - Social
 - Spiritual
 - Intellectual
Physical Fitness

- A way of life

- Incorporates many components important for health:
 - Muscular strength
 - Muscular endurance
 - Cardiorespiratory endurance
 - Flexibility
 - Body composition

- Each component offers unique benefits and advantages

- Benefits of physical exercise:
 - Helps control weight
 - Helps manage stress
 - Boosts the immune system
 - Protects against disease
 - Helps a person look and feel good
 - Provides enjoyment
Fitness Training Principles

It is important to know something about the principles that govern training, in order to create programs that more likely to generate the greatest improvements.

DOES THE TRAINING PROGRAM FITT?
FITT Principle

A method of recalling four important design elements of a training program:

Frequency – How often should I train this component?

Intensity – How hard do I need to work to achieve a benefit?

Time – How long should I train for?

Type – What activities should I do?
Training Frequency

- The number of times a person exercises each week
- Depends on an individual’s goals, abilities, fitness level, and sport
- To maintain → 2-3 sessions per week
- To improve → 4-6 sessions per week
Training Intensity

- How hard a person needs to work in order to achieve a fitness benefit
- Measured differently for each physical fitness component
 - Percent maximum heart rate
 - Resistance to be overcome
 - Number of repetitions
 - Speed of movement
 - Percentage of maximum performance effort
- Work-to-rest ratio
 - e.g., 1:2 – the rest phase is two times the length of the work phase
 - Rest phase allows for recovery from muscle fatigue
 - The lower the intensity the shorter the rest periods
Training Time

- Total time devoted to developing fitness
- Based on the duration of each training session
- Training volume
 - Element of training time
 - Measured in various units depending on the type of activity
 - E.g., in cyclic movements = total distance in one workout
 - E.g., in strength training =
 - (a) the total number of all repetitions of each exercise
 - (b) the total of all repetitions during a workout
 - (c) the total resistance moved
 - (d) the number of times a circuit was completed
Type of Activity

- **Formal fitness activities**
 - The development of fitness is the participant’s main goal
 - e.g., circuit training, group fitness classes, jogging, weight training

- **Informal fitness activities**
 - Emphasize the social aspect of exercising with fitness being a by-product
 - e.g., pick-up street hockey, social dancing, three-on-three basketball

- Often the participant will determine whether an activity falls into the formal or informal category
Overload Principle

- For improvement to occur, training demands must be higher than normal performance requirements in order to stress the capacity of the targeted muscle or body system.

- The additional overload can be achieved by increasing the frequency, intensity, or time of the exercise program.
Progression Principle

- After a period of training, the load that previously created a level of stress will no longer provide an adequate overload stimulus

- This stimulus is now a “normal” load

- To ensure that the muscles or systems continue to improve, the stimulus must be periodically increased

- Gradually increasing the training load, in small steps from one training cycle to another, is recommended for beginners
How to Overload

- by judging the number of times a given weight can be lifted before causing fatigue
 - E.g., you start lifting 25 kg 10 times
 - After training you can lift 25 kg 15 times
 - To increase muscle strength, load should be increased to what can be lifted until fatigue 10 times
 - This insures that the muscles are working in the overload zone
Reversibility Principle

- “Use it or lose it!”

- Training interruptions have a negative effect on personal fitness, resulting in stagnation or a temporary decline in performance

- Cardiorespiratory and muscular endurance performance declines faster than maximal strength and power performance

- Motor ability performance factors such as coordination and muscle integration also decline because these factors are all interrelated
Specificity Principle

- Exercises cause specific physiological responses or changes

- If you wish to improve a particular fitness or skill component, you must select a training modality that is as close in action as it can be to the end result
If you train arm strength by pushing with bent arms against immovable walls, you will become strong at pushing walls but not at doing push-ups, which require dynamic contractions.

It makes little sense for basketball player to practice shooting at an 8-foot basket if they shoot at a 10-foot one in a game or for hockey players to practice shooting drills without a goalie in the net.

If a person has to lift 30-kg boxes at work, it makes little sense to use a 10-kg resistance while training to improve work efficiency.
Sprinters will do themselves little good if they train by running long distances.

Performing bench presses will not help you improve the endurance of your leg muscles.

When you Exercise for Performance, Be Specific!

- Performing short presses will not help if they train by running long distances. Leg muscles.
Components of Physical Fitness

- Muscular Strength
- Psychomotor Ability
- Body Composition
- Cardiorespiratory Endurance
- Muscular Endurance
- Flexibility
Muscular Strength

- A subset of physical fitness
Muscular Strength

- The ability of a muscle or muscle group to exert force against a resistance

- The greater the muscle diameter, the greater the force

- Because of the influence of testosterone during and after puberty males develop greater muscular strength

- Absolute strength
 - Total force a person can apply in a single effort against a resistance

- Relative strength
 - Maximum (absolute) strength divided by body mass
Muscle loss in the elderly known as sarcopenia (Greek for “vanishing flesh”)
- By age 70 sedentary individuals have lost 30 percent or more of the muscle they had at age 30
- Muscle loss means diminished strength and balance

Elderly benefit greatly from strength-training programs
- Resistance weight training can halt sarcopenia
Muscular Strength - *Training*

- It is important to give muscles time to adapt to training between sessions
 - At least 48 hours when optimal muscle adaptation occurs

- If strength training is performed daily, focus on training different body areas in each session

- Resistance should be high and the repetitions low

- Able to do 8 to 12 repetitions per set

- The variety of exercises and the respective order of exercises within a training session must also be considered
Resistance Training Terminology

- **Resistance**: the amount of mass a client moves
 - Can be his own body weight or specific weight of an object
 - Often based on a percentage of one repetition maximum (1RM)

- **Number of repetitions (reps)**: the number of times a movement is performed without stopping

- **Set**: one group of reps

Example:
A student bench presses 45 kg 12 times, rests 3 minutes, and repeats. This is recorded as 2 x 12 x 45.
FITT Principle for Strength Training

Frequency – to allow muscle adaptation, every other day is usually best

Intensity – high resistance (i.e., 75 to 80 percent of 1RM) and low repetitions (8 to 12)

Time – dependent on the number of sets and repetitions that are planned as well as the number of different exercises involved in the workout session

Type – free weights, body weight, strength-training machines, and medicine balls
Muscular Strength - Testing

- One repetition maximum
 - 1RM
 - How much weight can be moved in a single maximum effort of a particular exercise
Agonist-Antagonist Training

- Include exercises that stimulate both muscle groups
 - Agonist: the working muscles
 - Antagonist: muscles that work in opposition, or counter-acting muscles)

- Injury occurs with a shift in strength equilibrium (e.g.,)
 - Biceps and triceps
 - Trunk extensors and trunk flexors
 - Quadriceps and hamstrings
Muscular Endurance

- A subset of physical fitness
Muscular Endurance

- The ability of a muscle or muscle group to sustain a given level of force repeatedly at a given resistance

- Static exercises
 - Involve sustained contractions
 - Lactic acid accumulates, generating a strong burning sensation and fatigue

- Dynamic exercises
 - Involve continual rhythmical contractions and relaxations
 - Allow for continuous delivery of oxygen, thus delaying fatigue

- Blood delivery to the muscles plays a large role

- Exercises that depend on the contraction of large muscle groups for prolonged periods of time also involve cardiorespiratory endurance
Muscular Endurance - Training

- Circuit training, free weights, exercise machines, and moving body weight
- Resistance needs to be relatively low
- Allow for 15 to 30 repetitions per set
- When the weight of the body offers too much resistance → muscular strength
FITT Principle for Muscular Endurance

Frequency – no limitations

Intensity – choose a resistance (e.g., free weight, body weight) that allows completion of 15 to 30 repetitions of the exercise before fatiguing

Time – whatever time it takes to complete the repetitions

Type – free weights, body weight, strength-training machines, medicine balls, circuits, and calisthenics
Muscular Endurance - Testing

- Common tests include
 - Push-ups and chin-ups → upper-body endurance
 - Partial curl-ups → abdominal endurance

- Done as many times as possible before muscle fatigue sets in or before a set time limit is reached
Cardiorespiratory Endurance

- A subset of physical fitness
Cardiorespiratory Endurance

- Involves the heart (cardio), the lungs (respiratory), and the blood vessels (vascular)

- Measured by the body’s ability to sustain aerobic activities

- Cardiorespiratory system provides oxygen to the muscle cells

- Aerobic zone
 - Most of the time
 - No oxygen debt – not getting breathless
 - A well-trained individual can put forth more effort without reaching this threshold
Cardiorespiratory Endurance - Training

- At least three times a week
- The more is better, as long as there is no evidence of fatigue or injury
- Target heart-rate zone → 50-85% of maximum heart rate
- Keep target heart-rate zone for 15 to 20 minutes
 - Maintain a steady heart rate within the zone or
 - Vary heart rate within the zone by working harder for a short time and then easing off
 - Can take short breaks (<2min) and then resume training
- Exercise whole body: step aerobics, tae box, spinning classes, swimming lengths, dancing, cycling, running, cross-country skiing, and etc.
- Can combine strength and endurance circuits
FITT Principle for Cardiorespiratory Endurance

Frequency – training at least three times per week is recommended

Intensity – choose an intensity that allows work at 50 to 85 percent of maximum heart rate

Time – sessions of 15 to 30 minutes; may be broken into intervals if the time between intervals is short (less than 2 minutes)

Type – any total body activity using large muscle groups
Step 1: Determine resting heart rate (restHR).
- Resting heart rate is measured first thing in the morning before getting out of bed (i.e., before any activity whatsoever).

Step 2: Calculate maximum heart rate (maxHR).
- Subtract client’s age from 220.

Step 3: Calculate heart rate reserve (HR reserve).
- Subtract client’s restHR from her maxHR.

Step 4: Find target heart-rate zone (target HR zone).
- Lower limit: multiply client’s HR reserve by 0.50 and add restHR.
- Upper limit: multiply client’s HR reserve by 0.85 and add restHR.
Example: Martha is 15 years old and has a resting heart rate in the morning of 70 beats/min

- maxHR: $220 - 15 = 205$
- HR reserve: $205 - 70 = 135$
- Lower target HR zone: $(135 \times 0.50) + 70 = 137.5$
- Upper target HR zone: $(135 \times 0.85) + 70 = 184.75$
- Martha’s target HR zone: 137 to 185 beats/min
To determine resting heart rate and heart rate during or immediately after exercise, feel the carotid or radial pulse with the middle three fingers.

- Count the number of beats in 10 seconds.
- Multiply this number by 6 to calculate the beats per minute.
- Also try feeling heart rate in the centre left area of your chest with the palm of your hand.
Taking the carotid pulse

Taking the radial pulse
Cardiorespiratory Endurance - Testing

- 12-minute run–walk test
- The beep test
- mCAFT test
Flexibility

- A subset of physical fitness
Flexibility

- The ability of a joint to move through its full range of motion

- Determined primarily by joint structure and to a lesser extent by muscle elasticity and length

- Benefits
 - Promotes joint health
 - Slows the process of joint deterioration
 - Improves quality of life
 - May also help prevent lower back pain and injuries
 - Reduce the frequency and severity of musculoskeletal injuries

- Affected by age, sex, and inactivity
Active and Passive Flexibility

- Active flexibility
 - The range of movement generated by individual effort
 - Dependent on the strength of the muscles on the opposite side of the joint
Active and Passive Flexibility

- **Passive flexibility**
 - The range of movement achieved with the help of external forces
 - Help achieve a wider range of movement than do active flexibility exercises

- **Goals:**
 - To increase the active range so that it approaches the passive range
 - To be equally flexible on both sides of the body
Flexibility Training

Frequency – as much as can be fit into your schedule

Intensity – stretch until you perceive muscle tension

Time – sessions of 5 to 60 minutes

Type – dynamic, static, or PNF, with or without a partner
Static Stretching Flexibility

- Holding a fully stretched position
- Slow relaxation of muscles to be stretched
- Held for 10-30 seconds
- Repeated 4-6 times
Dynamic Stretching Flexibility

- Rapidly moving a joint through its full range of motion
- Involves stretching with repetitive bouncing movements, using small intervals
- Increasing amplitude range
- Maximal range achieved after 10-20 movements
- Repeated 3-5 times
PNF Flexibility Method

- The most efficient stretching method
- Exploits the muscle spindles and the Golgi tendon organs (the stretch reflex)
- Involves a partner
- Three stages to the PNF method…
Flexibility – PNF

STAGE 1: Active Stretching Phase

- Muscles are actively pulled to the limit of the movement range
- Performed slowly and continuously
- Prevents muscle spindles from releasing the stretch reflex (and prevents muscles from contracting)
Flexibility – *PNF*

STAGE 2: Pre-tension Phase

- Trainee exerts a full static resistance against partner resistance
- Held for 7 seconds
- Causes tendon spindles to release inhibitory relaxation of the muscles to be stretched
Flexibility – PNF

STAGE 3: Passive Stretching Phase

- Partner pushes the body further into the stretching position, almost to pain
- Final position is held, with muscles relaxed, for 6 seconds
- Partner applies slow and constant pressure
Flexibility Testing

- Flexibility is joint specific

- The sit-and-reach test
 - Test for forward flexion
 - Often used as an indicator of overall body flexibility
Flexibility Testing

Body Rotation Test

Swimmer’s Shoulder Range Test
Body Composition

- A subset of physical fitness
Body Composition

- Refers to the amounts of fat, muscle, bone, and other organs

- Percentages of lean body mass and fat body mass are of primary interest

- Physical fitness is generally associated with a reduced body fat content and increased lean body mass
Components of Motor Ability

A skill-related fitness

- Speed
- Power
- Agility
- Balance
- Reaction Time
- Coordination
Motor Ability

- A subset of physical fitness
Motor Ability

- Refers to the integration of the central nervous system and the muscular system
- It is what determines how well the body moves
- The brain constantly monitors both its internal and external environments
- It then collects information and makes decisions about what is relevant
- Finally, it applies this information to physical movement
Power

- The ability to overcome external resistance at a high rate of muscular contraction

- The ability to exert force is dependent on muscular strength

- Therefore, power is a derivative of muscular strength

- Examples:
 - Throwing or kicking a ball
 - Blocking a spike in volleyball
 - Punching in boxing
 - Sprinting out of the blocks in running
 - Leaping in a dance routine
 - Driving a golf ball
 - Doing a layup or dunk in basketball
Training Power

- Frequency not more than three or four times per week
- Monitor total volume to reduce the chance of overuse injuries
- Keep intensity at or close to maximum
- Quick and intense movements, repeated 8 to 10 times in each of 2 to 4 sets
- Best to develop strength before adding power training
- Any type of resistance training with exertion phase being done as quickly as possible while recovering slowly to the start position
Training Power

- Examples:
 - Clapping push-ups
 - Throwing a medicine ball
 - Plyometric training

Plyometric training is one of the best ways to improve the explosive power of the legs.
Power - Testing

- Leg power
 - Vertical jump
 - Standing long jump are examples of

- Upper-body and arm power
 - Distance of a baseball or a weighted medicine ball throw
Agility

- The ability to execute movements at high speed with rapid changes in direction, level, or plane
- Important in basketball, volleyball, football, and hockey
- Training is as easy as practicing any sport at high intensity while performing quick changes in movement

- Evaluation is similar to practice drills used in various sports
 - Shuttle runs, zigzag runs, and the hexagon jump
Coordination

- The ability to perform movements in the correct order and with the proper timing
- Smoothness and efficiency of movements
- Involves the integration of eye, hand, and foot movements
- Important for shooting, catching, throwing, trapping, dribbling, and kicking a ball
- Training through drills and games, such as bouncing two basketballs at the same time and then starting to walk or move
- Tests are similar to the agility tests and practice drills used in various sports
Reaction Time

- The time it takes to initiate a response to a stimulus

- Involves various physiological processes
 - Sensory organs get aroused
 - Nerves conduct an impulse
 - Brain is where decisions are made
 - Muscles must contract and initiate movement

- These processes require time – reaction time

- Training - speed and reaction drills

- Testing - catching a metre stick
Balance

- The ability to achieve and maintain body stability
- Important in everything we do
- Static balance
 - The ability to balance on a stable surface when no locomotion is required
 - E.g., holding the body position while standing on a balance beam
Balance

- Dynamic balance
 - The ability to balance on a moving surface or during locomotion
 - E.g., rowing on water or dribbling a soccer ball

- Can be developed with practice during functional training and by focusing on body awareness and body positioning
Speed

- The highest rate at which a movement or series of movements can be executed

- Or the ability to cover a given distance in the shortest possible time during an all-out effort of <10 sec

- Important in many sport situations and in emergency situations

- Can be developed through interval training at very high intensity

- Evaluated through short runs
 - 50-metre
 - 100-metre dash
Fitness Training Activities

These activities are designed to develop various aspects of physical fitness. If combined, these activities can improve your client’s overall physical fitness.
Fitness training activities and their effects

<table>
<thead>
<tr>
<th>Training Method</th>
<th>Training Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance Activities</td>
<td></td>
</tr>
<tr>
<td>Station training</td>
<td>Strength</td>
</tr>
<tr>
<td>Circuit training</td>
<td>Strength, muscular endurance</td>
</tr>
<tr>
<td>Fitness classes</td>
<td>Strength, muscular endurance</td>
</tr>
<tr>
<td>Cardiorespiratory Activities</td>
<td></td>
</tr>
<tr>
<td>Walking, jogging</td>
<td>Aerobic fitness</td>
</tr>
<tr>
<td>Speed play training</td>
<td>Aerobic fitness</td>
</tr>
<tr>
<td>Interval training</td>
<td>Aerobic and anaerobic fitness</td>
</tr>
<tr>
<td>Cross-training</td>
<td>Aerobic fitness, muscular endurance</td>
</tr>
<tr>
<td>Aerobic fitness classes</td>
<td>Aerobic and anaerobic fitness</td>
</tr>
<tr>
<td>Circuit training</td>
<td>Aerobic fitness, muscular endurance</td>
</tr>
<tr>
<td>Functional Fitness Activities</td>
<td></td>
</tr>
<tr>
<td>Personal training</td>
<td>Motor abilities</td>
</tr>
<tr>
<td>Fitness classes</td>
<td>Motor abilities, strength, muscular endurance</td>
</tr>
<tr>
<td>Pilates</td>
<td>Core stability, balance, muscular endurance</td>
</tr>
<tr>
<td>Ashtanga yoga</td>
<td>Flexibility, muscular endurance</td>
</tr>
</tbody>
</table>
Resistance Activities - Station Training

- Completion of all the sets of one exercise before moving to the next exercise

- When performing a series of sets within a station, the same muscle groups are stressed over and over again

- Promotes the development of strength by using free weights and strength-training exercise machines with constant or variable resistance
Resistance Activities - *Circuit Training*

- Designed to exercise all major muscle groups in one session
- Used in many sports, and for general fitness development purposes
- Combines and manipulate specific exercises to achieve specific goals
- Exercise intensity, volume, and rest intervals can be manipulated
Circuit Training

1. Arms/Shoulders
 - Dips
 - Push-ups
 - Pull-ups

2. Legs
 - Stepping Exercises
 - Jumping Exercises
 - Knee Bending Exercises
 - Leg Raises (Trunk Fixed)
 - Back Extensions (Legs Fixed)

3. Back
 - Trunk Fixed
 - V-up Exercise

4. Abdominals
 - Legs Fixed
Resistance Activities - Circuit Training

Circuit training variables:

- Number of stations
 - 8 to 12
- Time at station
 - 30 to 60 seconds
- Exercise sequence
 - Alter muscle groups
- Number of laps
 - One to three
- Number of repetitions and level of resistance
 - Depend on the objective of training
- Recovery between exercises
 - Depends on the training
- Types of exercises
 - A wide variety of means
A 30-minute circuit training program that alternates cardiorespiratory activities with muscular endurance activities

<table>
<thead>
<tr>
<th>Station Number</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station 1</td>
<td>Rope skipping – two-foot bounce</td>
</tr>
<tr>
<td>Station 2</td>
<td>Bench press</td>
</tr>
<tr>
<td>Station 3</td>
<td>Stepping: up, up, down, down</td>
</tr>
<tr>
<td>Station 4</td>
<td>Trunk extension</td>
</tr>
<tr>
<td>Station 5</td>
<td>Jogging on the spot</td>
</tr>
<tr>
<td>Station 6</td>
<td>Curl-ups</td>
</tr>
<tr>
<td>Station 7</td>
<td>Seated row</td>
</tr>
<tr>
<td>Station 8</td>
<td>Heel raise</td>
</tr>
<tr>
<td>Station 9</td>
<td>Stationary bicycle</td>
</tr>
<tr>
<td>Station 10</td>
<td>Lat pull-downs</td>
</tr>
<tr>
<td>Station 11</td>
<td>Rope skipping – hop 8 x right leg, 8 x left leg</td>
</tr>
<tr>
<td>Station 12</td>
<td>Leg adductor machine</td>
</tr>
<tr>
<td>Station 13</td>
<td>Stepping: up, knee lift, down, down</td>
</tr>
<tr>
<td>Station 14</td>
<td>Trunk rotation machine</td>
</tr>
<tr>
<td>Station 15</td>
<td>Heel jacks</td>
</tr>
</tbody>
</table>

Participants spend 50 seconds at each station and are given 10 seconds to change stations. The circuit is repeated twice for a total of 30 minutes.
Cardiorespiratory Activities - *Brisk Walking and Jogging*

- Believed to be the best overall exercises for developing and maintaining cardiovascular fitness
- Can be done almost anywhere at almost any time
- Intensity - able to talk without undue respiratory distress
- Walking has the advantage of being low impact
Cardiorespiratory Activities - *Interval Training*

- Involves a timed, systematic alternation of exertion and recovery
- Benefits aerobic and anaerobic energy systems, and muscular endurance
- Four variables must be considered to provide desired workout intensity

Interval Training Variables

1. Distance or length of time

- Another type of interval training is often seen in group fitness classes
<table>
<thead>
<tr>
<th>Activity</th>
<th>Freq./Wk</th>
<th>Distance (m)</th>
<th>Time (sec)</th>
<th>Rest (sec)</th>
<th>Reps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jogging</td>
<td>3</td>
<td>50</td>
<td>8</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>Swimming</td>
<td>3</td>
<td>50</td>
<td>120</td>
<td>180</td>
<td>8</td>
</tr>
<tr>
<td>Bicycling</td>
<td>2</td>
<td>1,000</td>
<td>150</td>
<td>180</td>
<td>8</td>
</tr>
<tr>
<td>Kayaking</td>
<td>2</td>
<td>100</td>
<td>30</td>
<td>90</td>
<td>12</td>
</tr>
</tbody>
</table>
Cardiorespiratory Activities - Cross-Training

- Performing various kinds of exercise or activities that differ from usual routine
- In athletes, popular during injury recovery and off-season
- Prevent boredom, burnout, and overuse injuries
- Aerobic: cycling, cross-country, skiing, swimming, water running, and skating
- Muscular endurance: rowing machine, stair climber, and cycle ergometer
- Activity: soccer, beach volleyball, mountain biking, and hockey
Functional Fitness Activities

- Incorporate simple equipment such as stability balls, resistance bands, medicine balls, and balance boards
- Help individuals function better in their homes and workplaces
- The fitness training principle of specificity is key
- Rehabilitation exercises:
 - Give an elderly person the flexibility to tie his shoelaces
 - Give a parent with a back injury the strength and stability to move wet clothes to a laundry hamper and carry it safely
- Sport performance exercises:
 - Emphasize the development of the neuromuscular system and motor abilities
 - Continued only as long as correct form and technique can be maintained
 - Never performed to the point of fatigue
Group Fitness Classes

- Designed to develop all the physical fitness components

- Usually last from 45 to 60 minutes
 - Warm-up
 - Cardio work for at least 20 minutes
 - Muscular endurance work
 - Cool-down stretching

- A fun way to get fit and meet new people

- Better motivation when working out with others